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ABSTRACT. We present a method for speeding up numerical calculations of a light curve for a stellar

occultation by a planetary atmosphere with an arbitrary atmospheric model that has spherical symmetry.

This improved speed makes least-squares fitting for model parameters practical. Our method takes as input
several sets of values for the first two radial derivatives of the refractivity at different values of model
parameters, and interpolates to obtain the light curve at intermediate values of one or more model

parameters. It was developed for small occulting bodies such as Pluto and Triton, but is applicable to planets

of all sizes. We also present the results of a series of tests showing that our method calculates light curves

that are correct to an accuracy of 10 -4 of the unocculted stellar flux. The test benchmarks are (i) an

atmosphere with a l/r dependence of temperature, which yields an analytic solution for the light curve, (ii)

an atmosphere that produces an exponential refraction angle, and (iii) a small-planet isothermal model. With

our method, least-squares fits to noiseless data also converge to values of parameters with fractional errors

of no more than 10 -4 , with the largest errors occurring in small planets. These errors are well below the

precision of the best stellar occultation data available. Fits to noisy data had formal errors consistent with

the level of synthetic noise added to the light curve. We conclude: (i) one should interpolate refractivity

derivatives and then form light curves from the interpolated values, rather than interpolating the light curves

themselves; (ii) for the most accuracy, one must specify the atmospheric model for radii many scale heights

above half light; and (iii) for atmospheres with smoothly varying refractivity with altitude, light curves can
be sampled as coarsely as two points per scale height.

1. INTRODUCTION

Since Baum and Code's observations of a stellar occul-

tation by Jupiter in 1952 (Baum and Code 1953), the analy-

sis of occultation data to learn about the structure of plan-

etary atmospheres has developed along two lines: numerical

inversion (Kovalevsky and Link 1969; Wasserman and

Veverka 1973; French et al. 1978) and model fitting (Baum

and Code 1953; Elliot and Young 1992). In principle, for

atmospheres in hydrostatic equilibrium, the inversion ap-

proach will yield the temperature profile, as well as pressure

and number density profiles (if one knows the planetary

gravity and mean molecular weight--which effectively

means knowing the composition). However, small uncer-

tainties in the initial conditions cause significant errors in

the results until the inversion calculation has been carried

out for several scale heights (Wasserman and Veverka

1973; French et al. 1978; Roques et al. 1994). By then,

however, the occultation light-curve flux is low and errors

in the zero flux level can significantly affect the results.

Noise in the light curve also adds spurious structure to the

inversion results. In'spite of these difficulties, inversion is
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the best method of analysis when one does not have an a

priori model of the atmospheric structure.

The modeling approach has been limited to isothermal

atmospheres (Baum and Code 1953) and atmospheres with

power-Iaw thermal gradients (Elliot and Young 1992, here-

after EY92). However, our theoretical understanding of at-

mospheric structure has progressed far beyond just estimat-

ing a scale height, and the thermal gradients in atmospheres

would not necessarily follow a power law. For example,

physical models of Triton's atmosphere (Krasnopolsky et al.

1993; Strobel and Summers 1995) include the physical ef-

fects of electron heating, solar radiative heating of CH 4,

thermal conduction, and radiative cooling by CH4 and CO.

With a stellar occultation data set of high quality (e.g.,
Olkin 1996), one can hope to test the validity of these
models, and--for those models found to be valid--to use

the data to estimate values of atmospheric parameters, such

as the CH 4 and CO fractions in the atmosphere.

To carry out these analyses, one would like to fit an

appropriate atmospheric model to the occultation light curve

by least squares, in order to find the most likely values of
the model parameters and their errors. Because of the com-

plexity of the atmospheric models, a numerical approach is

required: for each set of model parameters, a model light

curve must be calculated, and for each parameter being fit,

one must calculate a numerical derivative for each point on

the light curve by incrementing the parameter and calculat-
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ing anothermodellight curve.Eachtimethe physical
modelisrecalculated(e.g.,StrobelandSummers1995),this
processinvolvesequationsthatcanonlybesolvedbynu-
mericaliterationto findself-consistentvalues,which,at
present,takesseveralhours(Strobel,personalcommunica-
tion).Hencecomputinga light curveandits numerical
derivativesfromsucha modelfor eachparameterfit can
involveanenormousamountofcomputingtimeforeachset
of parameters.Thiscomputingtimecanmakeieast-squares
fittingfor thebestparametervaluescumbersomeat best,
andoftenimpractical.

In thispaperwepresenta methodfor speedingupthe
processof calculatinglightcurvesfromcomplicatedatmo-
sphericmodelsby interpolatinga grid of precalculated
models.Incalculatingthelightcurve,weincludegeometri-
caleffectsappropriatetosmallplanets(EY92).Ourmodel
is thusapplicabletooccultingbodieslikePlutoandTriton
aswellasto largerplanets.Wealsoallowfortheeffectsof
extinction,thoughwedonotpresentresultsof teststhat
includeit.Westartwithoneormoreprofilesof valuesfor
thefirst tworadialderivativesof therefractivityat radii
spanningtheregionprobedbytheoccultation,andwein-
terpolatebetweenthesevaluesto calculatea modellight
curveforsomesetof parameters.Wepresentamethodfor
interpolatingbetweenpointsalongasinglerefractivitypro-
file to makea modellightcurvefroma singlesetof pa-
rametersandfor interpolatingbetweenmodelswithdiffer-
ingvaluesof parametersto makelightcurvesat arbitrary
intermediatevaluesof themodelparameters.

In derivingtheequationsfor convertinga refractivity
profileintoa lightcurve,wecloselyfollowSec.2of EY92.
Astheydid,weusethegeometricalopticsapproximation
andmakesomesimplifyingassumptions:(i) the lightre-
ceivedatanytimecomesfromonlyonepointontheplan-
etarylimb, (ii) theatmosphereis sphericallysymmetric.
Theseassumptionsarenotcriticaltoourmethod,however,
andwemakethemonlyto simplifythenumericalcompu-
tationspresentedhere.

2. THE MODEL

2.1 Analytic Basis

We assume that parallel, monochromatic light rays are

incident on a spherically symmetric planetary atmosphere

from the left in Fig. 1. The observer's plane is perpendicu-

lar to the path of the light rays. In this plane, y is a radial

coordinate measuring the observer's position relative to the

point through which a line connecting the occulted star and

the center of the planet would pass. EY92 used a coordinate

P = JYl. Using y instead of p enables us to more easily
include contributions to the flux from both the near and far

limbs (although in this paper we shall be working with only
the near-limb flux). We refer to y as a function of r, which

marks the position of arrival in the observer's plane of a

light ray with a radius of the closest approach to the planet
of r. We also refer to y as a function of t, where y(t)

marks the position of the observer in the plane as a function

of time. This function can be determined from the geocen-

tric planetary ephemeris and the motion of the observer

starlight

dr-[

Planet Ptane Observer'sP_ane

FIG. l--Stellar occultation by a planetary atmosphere. Starlight encounters

a planetary atmosphere and is bent by the refractivity gradient in the

atmosphere. Since the refraction increases exponentially with depth into

the atmosphere, refraction causes two neighboring rays to be bent by a

slightly different angle, and this differential separation increases by an

amount proportional to distance from the planet. This effect causes the star

to dim as seen by a distant observer (after EY92).

relative to the center of the Earth. The refraction angle,
O(r), is defined in the usual sense to be positive above the

axis, so refraction by the atmosphere produces negative
values.

With these assumptions, the flux from the occulted star
can be broken down into three terms: (i) the differential

refraction of the light rays at different depths in the atmo-
sphere, (ii) the partial focusing of the light rays in the plane

perpendicular to the path of the ray, and (iii) the extinction

of the light due to absorption in the atmosphere. From

EY92, this yields the following equation for the flux, r, as
a function of r:

! l

_'(r) = Jl +D[dO(r)/dr][ II +DO(r)/rl exp[- robs(r)]
differential refraction focusing exlinction

(1)

where robs(r) is the optical depth along the path of the-r_yy;

D is the distance between the occulting body and the ob-

server, and O(r) is the angle through which a light ray is

refracted as a function of the closest approach, r, to the

center of the occulting body. If we made no assumptions

about the refractivity in the atmosphere, we would need to
include a factor of one over the index of refraction in the

calculation of O(r) (Born and Wolf 1964). To simplify the

calculation we assume that the refractivity

v "_ 1 and that 101_ 1 throughout the atmosphere. Under

this assumption, the following approximations are valid:

f: r du(r')O(r) = _ r' dr' dx (2)

and

dO(r)d__._.__- = { dv(r '(r-__+ (r--__r'z tdxr2d2v(r')]

(3)

where x is a coordinate along the path of the ray measured

from its point of closest approach and r' is the radial

distance from the planet along the path of the ray (see Fig.
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l). The variablesr, r', and x satisfy the relation
r ,2 = r2+x 2.

In this paper we shall be referring to _cyl(Y), the unfo-
cused stellar flux from one limb that is not affected by

extinction. The subscript "cyl" reminds us that this is the

flux that would be seen refracted by a cylindrical atmo-

sphere (one with no focusing in the plane perpendicular to

the ray path). The range of _cyl(Y) corresponds to a nor-
malized stellar flux, which equals 1.0 when the starlight is

unaffected by the atmosphere and 0.0 when the stellar flux

is totally occulted. Since focusing and extinction are not

included, our equation for _cyl(Y) includes only the first
term of Eq. (1):

I

_bcyl(Y) = dO(r) ' (4)
1 +D dr

where y is related to r by

y = r+DO(r). (5)

The derivatives of the refractivity required to calculate 0(r)

and dO(r)/dr are supplied by the atmospheric model. Note

that only the first and second derivatives of the refractivity

are needed to calculate the light curve, and not the refrac-

tivity itself.

For atmospheres with v(r) monotonically decreasing
with r, the derivative in Eqs. (1) and (4) will always be

positive, and _bcyI will be finite. However, this condition
does not hold for all atmospheric models (and all real at-

mospheres), so that q_cyl can have infinite values when the
denominator in Eq. (4) equals zero. We have not addressed

this problem in the method presented here. This problem

could be addressed in the future by integrating q_cyl(Y) over

a small interval Ay. This integral will be finite since the

total light flux is finite. Also, the proposed integration pro-

cedure for treating points where Eq. (4) becomes infinite

would correspond to a real light curve, since any observed

To calculate a model light curve that we can compare
with occultation data we need the flux, and hence 0 and

dO�dr, as a function of time. Since we have 0 and dO�dr

as functions of radius, we want to find the radius as a

function of time. We do this in two steps. First we choose

a set of values of r (we used equally spaced points for

simplicity) and use our formula for 0 in Eq. (5) to make a

list of (r,y) pairs. We use these pairs to make an interpo-

lation function for r(y). Next we determine the function

y(t) from the details of the occultation we observed. For

small planet occultations, EY92's Eq. (5.1) is often appro-

priate. For larger planets and/or longer occultations, the

linear approximation for y(t) may not be adequate, and we

must calculate it from the planetary ephemeris and the mo-
tion of the observer for each desired time, t (Elliot et al.

1993).
Once we have r(y) and y(t), we are able to calculate

the radius corresponding to each time in which we are

interested. We can then use our equations for 0 and dO�dr

to calculate the first two terms in Eq. (1) at these radii,

which is the flux we are interested in (see Fig. 2).

2.3 Interpolations

An alternative method for calculating light curves for

parameter values between those of the given refractivity

derivative profiles would be to calculate the light curve for

each refractivity profile, then interpolate between the light
curves themselves, rather than interpolating the refractivi-

ties. However, interpolation assumes that the function being

approximated is smooth; when there are discontinuities or

sharp changes in the function, interpolation can introduce

large errors. Light curves can have discontinuities when, for

example, the surface of the planet moves in front of the
occulted star. Geometrical effects near the center of the

shadow can also cause abrupt changes in the light curve,
such as the "central flash" (Elliot et al. 1977). Since the

derivatives of the refractivity change more smoothly, the

light curve is always integrated (by the data recording better course is to interpolate these derivatives and then
equipment) over some finite interval of distance within the calculate the light curve (rather than interpolating a grid of
occultation shadow, light curves). Another reason for interpolating the deriva-

2.2 Numerical Implementation

The next step is to evaluate the equations developed in

the previous section using only a set of values of the first
two derivatives of v(r') at discrete radii. In order to use

Eq. (1) to calculate the flux, we need to put du(r')/dr'
and d2v(r')/dr '2 into integrable forms. We do this by

interpolating between the values we have for these quanti-
ties. The interpolation functions are only valid out to Xmax,
where

2 2 2 (6)
Xma x = rma x- r .

Hence, we approximate 0 and dO�dr by numerically

integrating Eqs. (2) and (3) out to -+Xmax. Since the angle
of bending in atmospheres falls off exponentially with in-

creasing r, in principle we can choose Xmax so that the

contribution to the integral beyond it is as small as desired.

tives of the refractivity is that if one has data from several

stations for the same occultation by a planet with a spheri-

cally symmetric atmosphere, one need calculate only one
interpolation function for the refractivity derivatives (since

the refractivity as a function of planetary radius will be the

same for all stations). If one interpolated the light curves

instead, different interpolation functions would be needed
for each station, since the light curves will look very dif-

ferent at stations that probed the atmosphere at different
minimum distances from the center of the occultation

shadow.

The interpolation functions we made for the derivatives

of the refractivity profiles needed to be multidimensional.

Many methods for making such interpolation functions re-

quire a rectangular grid of points as inputs. Rather than

requiring that each profile have values for the derivatives at
the same set of radii, we chose to make the interpolation

functions in two steps. First, we made one-dimensional in-

terpolation functions for the derivatives from each profile.
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interpolate
the _ogarithm,
then take the

Grid of refractivity[ exponential
profiles from J
physical model

I0isis) ]

dv/dr(r,params), I (2.3)
=l d2v/dr2(r, params) [

- interpolation
func ons

List ol
times,
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Value for I
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Pick a set of r's, I
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_ Numerical
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Extend upper I Add contribu ion
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_ Multipl'--"_- _Ca'lcuTate" _ ;u_:ighn ] Add flux ='_

in second term _ multip?y from all
from Eq. (2.1) in third term perpendicular

from Eq. (2.1} limb points

FIG. 2--Calculation flow chart. This diagram summarizes the steps in our method for numerically calculating the light curve from refractivity derivative
profiles. The arrows represent procedures and the solid boxes represent the input to these procedures and their results. Dotted lines indicate optional steps.

We then used these interpolation functions to calculate the

derivatives of the refractivity for each set of parameter

values at a common set of radii, thereby giving us a rect-

angular grid of points that we could use to make our mul-

tidimensional interpolation functions.

2.4 Boundary Conditions at Large Radii

It is often necessary to fit a long section of the light
curve when the star is not occulted in addition to the oc-

cultation event itself in order to establish the full scale

brightness of the star. With the method described above,

fitting a long upper baseline requires that values of the

refractivity be calculated out to very large radii. If calculat-

ing such values is time consuming, we can make a further

approximation for the flux beyond rmax to extend the
method with less computation time. We reject the simplest

possible approximation of setting the flux to 1.0 beyond

rmax because this introduces a discontinuity in the flux,
which can interfere with least-squares fitting of these mod-

els to occultation data. Instead, we approximate the values

at the ends using the model described in Secs. 3 and 4 of

EY92, calculating their model to only first order and assum-

ing that the outer atmosphere is isothermal. A detailed ex-

planation of how to do this is presented by Chamberlain

(1996).

programming language, or in something like Mathematica's

MathLink TM protocol, which allows calls to C programs
from Mathematica TM notebooks. From tests comparing the

speed of C programs to that of Mathematica TM notebooks,
we estimate that our method would run about 100 times

faster on the same machine if we implemented it in C rather
than in Mathematica TM.

To increase speed as much as possible within Math-
ematica TM, we used Mathematica's internal numerical inte-

gration and interpolation functions. Mathematica TM uses

piece-wise continuous polynomials to interpolate and adap-

tive quadrature to numerically integrate. Table I details
what we interpolated and what order polynomials we used.

3. TESTS

We performed several tests of our method. We tested its
accuracy for calculating single light curves, and then for

multiple light curves (as would be needed for least-squares

fitting of atmospheric models). Also we note the computing

time for a typical calculation.

3.1 Single IAght Curves

2.5 Software Implementation

We chose to implement our method as a package in
Mathematica TM 2.2 (Wolfram 1991) on a Power Macintosh

8100/80 running a remote kernel on an HP9000 735/125.

Mathematica TM compromised some computing speed for
ease of development. The speed penalty could be amelio-

rated by implementing our method either fully in the C

The three model atmospheres used in our accuracy tests

were: (i) an analytic model atmosphere, for which we can

specify a power-law temperature profile that corresponds to

a light curve that can be written with familiar functions
(Eshleman and Gurrola 1993); (ii) a tightly bound atmo-

sphere, close to that originally given by Baum and Code
(1953); (iii) a loosely bound atmosphere from the small-

planet model of EY92.
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TABLE 1

Summary of Interpolated Functions

Function Order of Interpolated Spacing of Points Comments
interpolated interpolation variable (per scale height)

dv(r,{Pi})/dr, Interpolated the natural log of the function
d2 v( r, {p i} ) / d r 2 3 r 2-10 Included derivatives for d v( r ) / d r

dv(r,{pi})/dr, r, 30-40

d2v(r,{p,})/dr 2 3 {p,}_ ...b

r(y) 3 y 50

Interpolated the natural log of the function

Spacing of points varied

Spacing of points varied

"{p,} represents one or more parameti_rs of the atmospheric model.
bOptimum spacing of atmospheric parameter values is highly dependent on the parameter.

3.1.1 Analytic Atmosphere

To describe the degree to which a planetary atmosphere

is bound, we use the parameter hh, which, as defined by

Eq. (3.9) of EY92, is equal to the ratio of the gravitational

potential to kT at the half-light radius, r h :hh = GMtzm/

kTr h , where G is the gravitational constant, M is the mass

of the planet, # is the molecular weight, m is the atomic

mass unit, k is Boltzmann's constant, and T is the tempera-

ture. We made a refractivity profile using the model speci-

fied in the Appendix (A.I) with h h = 100 and r h = 1500

km and compared the light curve we calculated with our

method to a light curve calculated analytically with the

model. The light curve and the differences between our

method and the model light curve are shown in Figs. 3 and
4.

The difference curve shows a maximum difference of

less than 10 -7, which is far smaller than noise levels in real

occultation data. However, it also shows two discontinui-

ties. To investigate the origin of the discontinuities, we

calculated the first and second differences of the flux from

both the model and our method for the eight points sur-

rounding each discontinuity. These differences showed that

the second discontinuity appears in the flux from our

method, but not in the flux from the model. The first dis-

continuity did not seem to appear in either set of numbers,

so we made a light curve from radii that were spaced 20

times closer together around both discontinuities and found

that the second one remained a discontinuity, but the first

1.00

x"

0.10

N

o
Z

0.01 _-t.._,_,_, i ,_=
20 10 0 -10 -20 -30 -40 -50 -60

Scale heights from half light, (y-yn)/H

F_G. 3--Sample light curve. This light curve was calculated with the

analytic benchmark model according to the prescription given in Appendix
(A.I), for kh = 100 and rh = 1500.

one clearly showed points spanning the gap of what had

looked like a discontinuity in the original test. Both of these

sharp changes are most likely due to numerical limitations

in our method.

3.1.2 Tightly Bound Atmosphere

Since the first-order structure of an atmosphere is usually

exponential rather than a power law, the second benchmark

model is one in which the refraction angle is strictly an

exponential function of radius (see Appendix A.2). We ran

a series of tests with this model. When we compared our

method to the first-order approximation, vj(r), we found

that tests with hh = 4× 107 showed the smallest differ-

ences between our method and results calculated from the

exponential refraction model, with larger differences at both

larger and smaller values of h h (see Fig. 5). The differences

for values larger than 4 × 107, shown in Fig. 6, were ran-

domly scattered around zero, while differences for smaller

values followed a smooth curve. This implies that the dif-

ferences were due to round off at larger values and the

first-order approximation at smaller values.

When we re-ran the same set of tests with this model

including the linear term, and again with this model includ-

ing up through the cubic term, we got smaller errors but

still found that there was a smooth difference curve at larger

2x 10 "8

0x 10 -B

(_ -2 x 10 a

8
-4 x 10 "e

=_*
C3

-6 x 10 "s

-8 x 10B

• ":' ': '' i,,,,i ....

,e'

- m"

. F_)'"

-10 x 10 "B ,__L,_,_, , _ .... _ .... _ .... _ , , , _L_.,_,__L_,_._,__

20 10 0 - 10 -20 -30 -40 -50 -60

Scale heights from half light, (y-yn)/H

FIG. 4--Analytic test. Differences between our model results and the light

curve in Fig. 3 (from the equations in Appendix (A.I) with h 0 = I00 and
r h = 1500). The differences are defined to be flux from the model minus

the flux from our method. Note the two apparent discontinuities in the
difference cur,,e---one around five scale heights below half light, and the

other around 40 scale heights below half light. We believe that they are
due to numerical limitations in the implementation of our method.
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10 "1°
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FiG. 5--Maximum size of differences in tightly bound atmosphere tests

using different numbers of terms from the power series. Note that the

differences in the first-order tests bottom out for _.a of about 4:,< 107,

while the tests with more terms bottom out at slightly larger ratios and

generally have smaller differences, especially at smaller values of h a . The

two sets of tests with more terms have similar differences, especially in the

region _'here most real occulting bodies fall Q'h of about 102--3 × 103).

ratios (see Fig. 7). In fact, this difference curve was almost
identical for these two sets of tests.

The patterns we saw in the differences might be caused

by problems with the power series. The refractivity along

the path of a ray of light is Gaussian when x is small

compared to r', but farther out in the atmosphere where x

becomes comparable to r', the path of the ray becomes

similar to a radial path, and the refractivity approaches a

simple exponential. In the case of a large planet, this change

in the behavior of v occurs high in the atmosphere where I,

is very small and thus has little effect on the bending of the

ray. In smaller planets, however, this change occurs lower

in the atmosphere, and could cause the differences we saw
in these tests.

1.5 x 10a

1.0 x 10e

5,0 x 10-9

0.0 x 10°

-5.0 x 109

-1.0 x 108

-1.5 x 104

10

i" i

........................i......................iil................::i.........................i................................................
% i°"

,,, • ,, , z.

............................................ T'; ............................ ; ............................... _ ....................

................................................_.......................-......................+..............................................

0 -5 -10 -15 -20

Scale heights from half light, (y-y_)/H

FIG. 6--Differences in one term tightly bound atmosphere test with ha

= 4 × 108 (rh = I0 m km, H = 25 kin), defined as flux from model mi-
nus flux from our method. The differences are well scattered with mean

very close to zero. No pattern is visible. These differences are most likely

caused by round off at the machine precision.
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FIG. 7--Differences in one term and two term tightly bound atmosphere

tests with kl, = 4x 103 (r h = 105 km, H = 25 km), as defined above.

Deeper than about twelve scale heights below half light, the two term

differences dropped below zero, and were of order -10-_L The differ-

ences in both tests follow definite, smooth curves, with no evidence of

scatter. However the curves have different shapes. Both of these shapes

were consistent across h a ratios, with the shape of the two term test also

appear/ng consistently in tests where we included more than two terms.

3.1.3 Loosely Bound Atmosphere

Next, we ran a series of tests using EY92's isothermal

model on sample planets similar to those in our solar sys-

tem. Table 2 gives approximate half-light radii and scale

heights for some of the planets and moons that have been
observed by occultations. It shows the range of h values

that naturally occur. We ran three groups of tests on model

planets spanning the size range of the solar system: one

similar to Jupiter, one similar to Venus, and one similar to
Pluto.

In each group of tests, we used model planets with four

different combinations of values of half-light radius r_ and

energy ratio at half-light h h . We tested how the differences

depended on several properties of the profiles: how many
points per scale height we had in each profile, how far

above the half-light radius the profiles extended, whether or

not we extended the upper boundary with the isothermal

model, and how many points were calculated for the inter-

nal interpolation function for r(y). We did include the

TABLE 2

Half-Light Radii and Scale Heights for Planets and Satellites

in the Solar System"

r n H

Planet or Satellite (km) (km) X,_

Jupiter 71900 25 2860
Saturn 61000 62 980

Venus 6200 7 890

Neptune 25300 50 500

Uranus 261 O0 50 480

Mars 3500 8 430

Triton 1450 19 77

Titan 3000 47 63

Pluto 1200 60 20 -

aValues were obtained from (Elliot and Olkin 1996) and references therein.

The half-light radii are typical values for occulations observed from Earth,

and scale heights are measured around the microbar pressure level in the

atmosphere.
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TABI.E 3

Maximum Differences between EY9Ts Model and Our Method a

Model planet

(a) Differing tops of refractivity profiles, upper boundary extended with an isothermal model

Top of the model (xma0 in scale heights above half-light radius

2O 15 10

Jupiter-like 8.5×10 -9 2.5×10 9 4 × 10-8 4 x 10-6
Venus-like 1.5Xl0 -s 8 × 10 -9 I X 10 7 9 × 10-5

Plut°'likeb 2×10 -5 3 × 10 -5 3 × 10-4 2 x 10-3

(b) Differing tops of refractivity profiles, upper boundary not extended with an isothermal model

Top of the model (Xmax) in scale heights above half flight radius

20 15 10Model planet

Jupiter-like 8.5× 10 .-9 2.2× 10 -7 3.534 10-5 5.1 × 10 -3

Venus-like 1.3 x 10-8 2.2× 10 .7 3.1 × 10-5 4.5x 10-3

Pluto-like b 1.9× 10 5 6.2x 10 -5 4.5× l0 -4 9.5×10 -3

(c) Differing numbers of points per scale height in the refractivity profiles

Points per scale height in refractivity profile

Model planet 10 7 5 2

Jupiter-like 8.5× 10 -9 8.5× 10 -9 8.5× 10 .9 8.5)< 10 -9

Venus-like 1.3× 10-s 1.3x 10-s 1.3x 10 -a 1.3x 10 8

Pluto-like b 2.0× 10 -5 2.0× 10 -s 2.0× 10-5 t.9× 10-5

(d) Differing numbers of points used in the internal interpolation of r(y)

Points per scale height in refractivity profile

Model planet 125 50 10

Jupiter-like 8.5× I0 -9 8.5× 10 9 6.8× I0 -7

Venus-like 1.3× 10-8 1.3× 10-8 6.8× 10 -7

Pluto-like h 2.0× 10 -5 2.0× 10 -s 2.1 × 10 -s

aStandard conditions for the tests were (i) to extend the profiles 20 scale heights above half light, (ii) to extend the upper boundary using the isothermal

atmospheric model, (iii) to have ten points per scale height in the profiles, and (iv) to calculate 125 points per scale height for r(y) interpolation.
bExcept for the last column, these numbers are averages of values that vary by a factor of five or more.

focusing term in these tests and ran tests along nearly cen-

tral chords. For simplicity, however, we did not test regions

of the light curves near the central flashes.

A summary of the results can be found in Table 3. All

the results for the Jupiter- and Venus-sized model planets

0.0 x 10 "g

FIG. 8--A typical difference plot for a Jupiter- or Venus-sized planet test
vs. the loosely bound atmosphere model. The differences are concentrated

in the region where the flux is dropping off the most rapidly. We extended
the light cu_'e out to 200 scale heights above half light and down to 450

scale heights below half light, but the differences were fiat and very near

zero in the regions not shown. This test was run with rh = 5000 km and

H = 5 km (Xh = 103), and with a refractivity profile that had ten points
per scale height and extended 20 scale heights above half light. We used
125 points per scale height in calculating the interpolation function for
r(y).

(e.g., Fig. 8) were similar--none of the results were more

than an order of magnitude apart. There was a weak trend

for the differences in the Venus-sized cases to be larger

than in the Jupiter-sized cases. In the Pluto-sized cases (e.g.,

Fig. 9), the differences were generally much larger and not

as consistent from test to test as they were with the larger

planets.

In these tests, we consistently found that the most effi-

cient form for the profile was to have only 2-5 points per

scale height, but to have the profile extend about 15 scale

heights above the half-light radius. Differences between our

method and EY92's model increased sharply when we low-

ered the top of the profile (i.e., we decreased Xmax). This

increase occurred more rapidly when we did not extend the

upper boundary with the isothermal model than when we

did. Minimum differences were achieved when we also

calculated values for the interpolation of r(y) at 50 or more

points per scale height--much finer spacing than in the

profiles.

The dependence of the size of the differences on the

radius of the model planet may be explained by the power

series approximation made in EY92's model. In our Pluto-

sized test planets, we used values of 10.48 and 20.97 for

h h. EY92's model includes a power series in a variable

proportional to 1/hh, and we found larger differences be-

tween our method and their model in the cases where h h

was 10.48. The size of these differences could be explained
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FIG. 9--A typical difference plot for a Pluto-sized planet test vs. the

loosely bound atmosphere model, These differences are spread out over the

entire region of the light curve, unlike the previous example. They also

follow a much smoother curve. Unlike the larger planet tests, the differ-

ences from each of these small-planet tests had their own characteristic

error shape. These differences are most likely caused by approximations

made in EY92's model, not by errors in our method. This test ran with

r,_ = 1250kin and H = 59,6km (h h = 20,8), and with a refractivity

profile that had ten points per scale height and extended 20 scale heights

above half light. We used 125 points per scale height in calculating the

interpolation function for r(y).

by the power series if the coefficient of the 5th term in their
series is of order 10.

3.2 Multiple Light Curves

In this section we discuss how our method works when

we interpolate between profiles and when we calculate

models within a least-squares fitting procedure.

3.2. I Comparing Light Curves

We ran tests in which our method interpolated between

profiles to calculate the light curve. We compared EY92's

no noise model for planets similar to Pluto and Triton
(r h = 1500km, hh = 100). For this type of planet, the

errors for a single profile were around 10 -7. When we ran

our method with three profiles spaced 10% apart in hh we

got maximum differences between profiles of about 10-51

When we shrank the spacing to 1% and 0.01%, the maxi-
mum differences were about 10 -7 in both cases--the same

as in the single profile case. When we ran similar tests with

rh, we found that the maximum differences between pro-
files were about 10 -7 regardless of whether the profiles

were spaced 10%, 1%, or 0.01% apart. This difference in

behavior is most likely due to the linearity of rh---changing
the half-light radius simply causes a linear shift in the light

curve, while changing the energy ratio causes more compli-

cated, nonlinear changes in the light curve. To verify this

hypothesis, we compared light curves made with 10% spac-

ing in the square root, cube root, and natural logarithm of

r h and got slightly larger differences than we did when we

used r h itself as the parameter.

3.2.2 Least-Squares Fits

Next, we used EY92's implementation of least-squares

fitting in Mathematica TM to fit for h h and rh in complete

light curves with small central flashes. In fits for h h and rh

with profiles spaced 1% apart, the parameters converged to

values that differed from the values used to generate the
light curves by about seven parts in 10v---errors on the--

same order as the differences between the model light

curves and those generated by our method. The errors we

found when we fit both parameters simultaneously were
similar to the errors we found when we fixed one parameter

at the model value and fit only for the other one. Fits for kh

with profiles spaced 10% apart yielded fitted values that

differed from the model parameters by four parts in 105=

when the correct model parameter values fell between pro-
files, and by seven parts in 107 when the model parameters

were on a profile. Similar fits for r h yielded errors of about
seven parts in 107 both on and off profile.

To simulate fitting real data, we also ran a series of tests
on EY92's model with random Gaussian noise added to it.

We characterized the noise level by specifying the ratio of

the unocculted stellar signal to the rms noise level, inte-

grated over one scale height of the atmosphere (measured in

the shadow plane). We tested three different levels of noise

that are typical of real data. The lowest signal-to-noise ratio

per scale height used was 20; we also used values of 200

and 2000 to simulate very high signal-to-noise ratios and to
study how our method performed with data of different

quality. In these tests, we spaced six profiles 3% apart in

the one-parameter fits and 15 profiles (3 in rh by 5 in hh)

8% apart in the two-parameter fits in order to have the

profiles span the range of values the parameters converged

to. A summary of our results is in Table 4. Note that 28 of
42, or 67% of our results, fell within the formal error,

which is very close to the 68% expected. There appears to

be a tendency for the r h fits to converge to a value smaller
than the correct one--the fitted value was smaller than the

model value in 15 of 21 tests. With this small a sample,

however, the significance of this trend is difficult to deter-

mine. Statistically, if there were no bias, there would be a

4% chance of getting results at least this skewed in this
direction.

As a comparison, we ran several fits of EY92's model to

noisy light curves generated the same way as we did in

testing our method. These fits had very similar errors to

those we got with our method. Upon fitting their model to
light curves fit previously by our method, we found formal

errors that were the same to within 1% and fitted parameter

values that were the same to within a couple percent of the
formal errors.

3.3 Computation Time

To evaluate the speed of our method and verify that it is

a faster alternative to calculating a complicated atmospheric
model, we had Mathematica TM display the CPU time used

in calculating the light curve each time we ran a test. For

example for a Hewlett-Packard TM PA-RISC 7150 processor

running at 125 MHz (SPEC CINT95 = 4.04,

CFP95 = 4.55), the one-profile EY92 tests that we ran typi-

cally took about 10 min of CPU time to calculate the light

curve, ranging from 920 s down to 50 s. In these tests, the

refractivity profiles extended 5-20 scale height above r h

,%



1 178 CHAMBERLAIN AND ELLIOT

TABLE 4

Results of Fits to Noisy Data

S/N = 20

Real tr' s

Fit Fitted value value apart a Fitted value

S/N = 200

Real

value

o"s

aparP Fitted value

S/N = 2000

Real

value

o"s

apart a

h h alone 103.4_+6.6 100.5 +0.44 101.92_+0.62

104.1 -+6.8 100.5 + 0.51 99.08+0.61

100.8-+6.2 101.2 - 0.07 102.01 ---0.63

95.3---5.8 99.7 - 0.77 99.59_+0.61

rh alone 1501.0_+2.6 1507.5 - 2.51 1507.11 ---0.26

1504.9 _+2.6 1507.5 - 0.98 1507.00_+ 0.25

1519.9+-2.5 1521.0 -0.42 1520.82+-0.26

1497.2+-2.6 1498.0 -0.32 1498.09_+0.25

both, h h 109.1 _+7.4 100.5 + 1.17 99,52_+0.62

109.9_+7.2 I01.2 + 1.20 101.20_+0.65

99.7_+6.7 99.7 0.00 99.59_+0.64

both, r h 1508.1 _+2.5 1507.5 + 0.20 1507.74--.0.24

1519.1_+2.4 1521.0 -0.79 1520.70_+0.26

1494.4-+2.7 1498.0 - 1.33 1520.70_+0.26

100.5

100.5

101.2

99.7

1507.5

1507.5

1521.0

1498.0

100.5

I01.2

99.7

1507.5

1521.0

1498.0

+ 2.29

- 0.34

+ 1.26

-0.18

- 1.51

- 2.01

- 0.68

+0.38

- 1.59

0.00

-0.17

+ 1.03

-I.18

-0.32

100.626_+0.065

100.496_+0.062

101.131 ±0.063

99.623 +-0.061

1507.512_+0.026

1507.488_+0.026

I520.976_+0.023

1498.003_+0.025

100.501 _+0.066

101.159+-0.063

99.718_+0.062

1507.491+-0.026

1520.992_+0.025

1498.025_+0.025

100.5

100.5

101.2

99.7

1507.5

1507.5

1521.0

1498.0

100.5

101.2

99.7

1507.5

1521.0

1498.0

+ 1.93

- 0.07

- 1.09

- 1.27

+ 0.48

- 0.46

- 0.96

+0.10

+0.01

-0.64

+ 0.29

-0.36

-0.33

+0.98

"These numbers are (fitted value-real value)/(standard deviation of fitted value).

with 2-i0 points per scale height, and we calculated 10-

125 points per scale height in the internal interpolation

function for r(y) and 200-700 points in the final light

curve. The fastest tests were the ones where we did not

calculate as many points for the internal interpolation of

r(y). Extending the upper boundary with the isothermal

model generally added about 25% to the calculation time.

Using refractivity profiles with fewer points per scale height

had little effect on the calculation time for the model, but

lowering the top of the profile (decreasing Xma_) increased

the time considerably. The number of points at which we

wished to calculate the light curve did not seem to be a

major factor. Our tests often had different numbers of

points in them, and some of the tests with more points in

the light curve ran faster than tests with fewer.

The time needed for least-squares fits depends on the

number of parameters fit and the number of iterations

needed for the values of the particular set of parameters to

converge. In general, to determine the time needed for a fit,

one should multiply the times given above by the number

of parameters fit, and multiply that by the number of itera-

tions needed. Our fits for two parameters often took as long

as 3-4 h. If we implemented this method in C, we predict

that such two parameter fits would take only about 2 rain.

4. CONCLUSIONS

We have developed a method for numerically calculating

occultation light curves from an arbitrary atmospheric

model that is fast enough to enable least-squares fitting for

model parameters. This method can be applied to a broad

range of bodies, including Pluto and Triton. We have tested

and verified that our method shows reasonable agreement

with more exact calculations. Small, systematic errors in

our method (most likely due to numerical procedures) are at

a level much lower than the noise levels in recent occulta-

tion observations. To date, the best signal-to-noise per scale

height levels have been on the order of 103. When we used

sufficiently complete refractivity profiles, the largest differ-

ences between our method and the comparison models were

on the order of 10-4.

We found that it is better to interpolate the refractivity

derivatives than to interpolate light curves, and that the

most efficient form for refractivity profiles that still gave

good results was for each profile to extend well above the

half-light radius but to include only a few points per scale

height. The quality of results obtained with such profiles

implies that, if necessary, it is acceptable to record occul-

tation data with as few as two light-curve points per scale

height.

Planned improvements to our procedure include speeding

up the calculations by implementing the code in a compiled

language, such as C. This will enable the least-squares fit-

ting of atmospheric models with more parameters. Also, for

large, oblate planets--which do not satisfy the assumption

of spherical symmetry--one could recast the fundamental

equations in terms of local radii of curvature, rather than the

single radius used for the spherical-symmetry assumption.
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APPENDIX: EQUATIONS USED FOR MODEL-

ATMOSPHERE TESTS

In this Appendix we develop the equations in the form

needed for the tests of our method performed on an analytic

atmosphere and a tightly bound atmosphere. Equations for

the loosely bound atmosphere appear in EY92.



A.1 Analytic Atmosphere

Eshleman and Gurrola (1993) have presented a set of

descriptive atmospheric models that satisfy hydrostatic equi-

librium for different power-law radial dependencies of grav-

ity and temperature. For a spherically symmetric gravity
field (i.e., g(r) = GM/r2), an inverse radial temperature

dependence (i.e., T(r) = Toro/r, where r o is a reference
radius) yields a model expressible with ordinary functions.

If H o is the pressure scale height at the reference radius,
we define ho _ ro/Ho. The refractivity and its first two

derivatives for this analytic model, needed to calculate the

light curve with our method, are given by

( r 1 -(x0-1)
v(r) = _0 --/to] (AI.1)

__dv(r)dr= v°(h°-l)(r_)-×°ro (hl.2)

d2v(r) VoXo(ko-l) (r) -(x°+l)dr: - r(_ _o (A1.3)

We also need the analytic expressions for the refraction

angle and its derivative, required for calculating an analytic

light curve (Eshleman and Gurrola 1993):

2 v°rr"2F (9) r -(Xo-,)

O(r) = - F(XO

Its derivative is

2 voqr'n(h0- l )F(9 ) x0
d O( r.___.._)= r -

dr roF( )t o

(AI.5)

The value of the reference radius, r o , is arbitrary, so we

choose to set it to the half-light radius, rh . To find rh, we

set _bcyI to 0.5 in Eq. (4) and solve for dO�dr. Substituting
this expression into Eq. (A1.5) and solving for ro gives us

the following formula for rh:

2 uoTrV2D(ho- l )F( _)

ro:,= .
then, by definition, )t at half-light, )th = )to. To calculate

the analytic light curve, we substitute Eq. (AI.6) for ro in

Eq. (AI.5) and then put this equation into Eq. (4). Equa-
tions (5) and (A1.4) can be used to relate r and y.

A.2 Tightly Bound Atmosphere

In the exact equation for a cylindrical atmosphere (one

with no focusing in the plane perpendicular to the ray path),

the light-curve flux, _bcyI, is related to the derivative of the
refraction angle, O(r) for an atmosphere at a distance D by

Eq. (4):
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1

_bcYl=[l+D dO" (A2.1)

Also, y is related to the refraction angle in the small-angle

approximation by Eq. (5):

y(r) = r+ DO(r). (A2.2)

If we pick a reference ray that intercepts the atmosphere at

a radius r 0 and is then refracted by the atmosphere by an

angle 0o, so that it intercepts the observer at Yo, we have

Yo = ro+DOo. (A2.3)

We postulate that the atmosphere produces an exponential

refraction angle with a scale height H, so that

O(r) = Ooe - (r- ro)lH" (A2.4)

Next, we subtract (A3) from (A2) and divide by the scale

height H:

_ D =
(Y -Yo) (r- ro) + (0- Oo). (A2.5)

H n H

D 0o '

H

We choose to put the reference level at half light

(_bcyI = 1/2). Now we can solve for 00:

1 1 I -

I+D ! l---
r=r 0

(A2.6)

or

H

00 - D" (A2.7)

Substituting 0o = -H/D in to the flux equation (Eq. (4)),

we get

I I 1

fb_y_= [ dO = [ l + e-(r-ro)/t q = l + e-(r-r°)/H"
1 + D y;r

(A2.8)

Solving for the exponential in terms of the flux, we find

1
e -(r-rO)/H : _-- 1

_cyl

The exponent is

(r o) -ln - 1 ,

(A2.9)

(A2.10)

which is the first term on the right-hand side of Eq. (A2.5).

Next we look at the second term on the right-hand side of

Eq. (A2.5):

D DO DO o DOo
(0-0°) = H H -- H [e-(r-ro)/H--I]

1
- 2,

_cyl

(A2.11)
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wherethelaststepin Eq.(A2.11)usedEqs.(A2.4)and
(A2.9).Substitutingthis result and Eq. (A2.10) into Eq.

(A2.5) and denoting this is the observer's y coordinate at

half light by Yh, we find

Y(t)-Yh--H in( q_cyl(y)I 1)-( _bc_(y ) 2).

(A2.12)

This light-curve equation, valid for exact exponential refrac-

tion, is identical to the approximation derived by Baum and

Code (1953) for the occultation light curve for a large,

spherical planet with an isothermal atmosphere.

rk/_-_ [ 1 (H) 9 (H)u(r) = uh e (r-rh)/n 1 - -ff + _-_

Note that the coefficients begin to slowly increase in

size, indicating that this series is asymptotic and will most

likeIy diverge if we include enough terms.
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